
ALGORITHMS IN ACTION - FFT

BASED ON LECTURES BY URI ZWICK AND HAIM KAPLAN

1. Discrete Fourier Transform

y0
y1
...

yn−1

 =

...

· · · ωjkn · · ·
...

x0
x1
...

xn−1

Where ωn is the n-th root of unity. For example, on n = 4

y0
y1
y2
y3

 =

1 1 1 1
1 ω ω2 ω3

1 ω2 1 ω2

1 ω3 ω2 ω

x0
y1
...

xn−1

and ω = ω4 = e2πi/4 = i.

1.1. DFT as polynomial evaluation. We can look at the DFT as an evaluation of a polyno-
mial with coefficients x0, x1, . . . , xn at the points 1, ω, ω2, ωn−1. If we denote this polynomial as
X then:

X (z) =

n−1∑
k=0

xkz
k = x0 + x1z + · · ·+ xn−1z

n−1

and we can write the values yj as

yj =

n−1∑
k=0

ωjkn xk = X
(
ωkn
)

2. Fast Fourier Transform

The naive computation of the DFT required Θ
(
n2
)

time. We will show an algorithm (FFT)

which computes the DFT in Θ (n log n) time. We will assume that n = 2k.

Lemma 1. If x = (x0, x1, ..., xn−1) ∈ Rn , y = (y0, y1, . . . , yn−1) ∈ Cn and y = DFT (x), then
yn−j = y ∗ j , for j = 1, .., n− 1.

Proof. By definition,

yj :=

n−1∑
k=0

xkω
jk
n

yn−j =

n−1∑
k=0

xkω
(n−j)k
n =

n−1∑
k=0

xkω
−jk
n (wnn)

k ?
=

n−1∑
k=0

xk
(
ωjkn
)∗

=

(
n−1∑
k=0

xkω
jk
n

)∗
= y∗j

From the Algorithms in Action website, Notes written by Arazim c©.

1

http://www.cs.tau.ac.il/~zwick/ALG-ACT-2016.html

ALGORITHMS IN ACTION - FFT 2

where ? is due to the fact that ωnn = 1 and that for all z such that |z| = 1, z∗ = z−1 �

2.1. Decomposing the DFT. It’s possible to compute the DFT of an even size n by computing
two DFT’s of size . Defining x(0) = (x0, x2, . . . , xn−2) and x(1) = (x1, x3, . . . , xn−1) as the even
and odd parts of x. We can create the polynomials

X (z) =

n−1∑
j=0

xjz
j X(0) (z) =

n/2−1∑
j=0

x2jz
j X (z) =

n/2−1∑
j=0

x2j+1z
j

and thus, the value of this polynomial is equal to

X (z) = X(0)

(
z2
)

+ zX(1)

(
z2
)

Since we need to evaluate X (z) at the points ω0
n, ω

1
n, . . . , ω

n−1
n , we will want to evaluate X(0) (z)

andX(1) (z) at ω0
n, ω

2
n, . . . , ω

2(n−1)
n . These n points are exactly ω0

n/2, ω
1
n/2, . . . , ω

n−1
n/2 , ω

0
n/2, ω

1
n/2, . . . , ω

n−1
n/2

and as a result we only need to calculate DFT
(
x(0)

)
and DFT

(
x(1)

)
, use each number twice

and multiply the values of DFT
(
x(1)

)
by the appropriate powers of ωn. Thus, we arrive at the

following algorithm:

Algorithm 1 FFT(x0, x1, . . . , xn−1)

1: if n=2 then
2: return (x0 + x1, x0 − x1)
3: end if
4: (a0, a1, . . . , an/2−1 ← FFT(x0, x2, . . . , xn−2)
5: (b0, b1, . . . , bn/2−1 ← FFT(x1, x3, . . . , xn−1)
6: for j ← 0 to n/2− 1 do
7: yj ← aj + ωjnbj
8: yn/2+j ← aj − ωjnbj
9: end for

10: return (y0, y1, . . . , yn−1)

2.2. Complexity analysis of the FFT. Denoting the cost of an FFT of size n as T (n) we
can easily see that

T (n) = 2T
(n

2

)
+O (n)

and as a result, T (n) = O (n log n). Defining A (n)as the number of additions/subtractions in a
FFT of size n, and M (n)as the number of multiplications in a FFT of size n, we have that:

A (2) = 2 M (2) = 0
A (n) = 2A (n/2) + n M (n) = 2M (n/2) + n/2
A (n) = n log2 n M (n) = n

2 log2
n
2

2.3. Circuit for FFT. A major reason for the FFT algorithm is at which one can create a
circuit which performs it. An example circuit is:

In this example, ω is known as the “twiddle factor” and another name for the whole diagram
is a butterfly.

ALGORITHMS IN ACTION - FFT 3

b × − a− ωb

a + a+ ωb
ω

Figure 2.1. An FFT ciruit of size 2

3. The inverse DFT

The inverse of the DFT is very similar to the DFT:
x0
x1
...

xn−1

 =
1

n

...

· · · ω−jkn · · ·
...

y0
y1
...

yn−1

3.1. Proof of the inverse. Recalling that if C = AB then cj,k =

∑n−1
l=0 aj,lbl,k. We will show

that
n−1∑
l=0

ωjln ω
−lk
n =

{
n if j = k

0 otherwise

In our case, C = Id and A is the original DFT matrix. If j = k then the claim is obvious. If
j 6= k then:

n−1∑
l=0

ωjln ω
−jl
n =

n−1∑
l=0

ω(j−k)l
n =

ω(j−k)n − 1

ωj−kn − 1
= 0

Since
(
ωj−k

)n
= 1 and ωj−k 6= 1 �

3.2. DFT−1 as polynomial interpolation. We will notice that DFT (x) is an evaluation of
the polynomial X (z) at the points 1, ωn, ω

2
n, . . . , ω

n−1
n . This gives us that DFT−1 (y) interpolates

the coefficients of X (z), since these are set uniquely. As DFTand DFT−1 are inverses of each
other, the interpolation is unique.

3.3. The fourier basis. We can define a basis for the function L2([0, 1],R) (the space of real
valued square integrable functions on the interval [0, 1]), using the fourier basis

fj =
1√
n

(
1, ω−jn , ω−2jn , . . . , ω−(n−1)jn

)T
This basis is orthonormal, since

f∗j fk =

{
1 if j = k

0 otherwise

And the DFT performs a change of bassi from the standard basis to the fourier basis.

Exercise 2. Let x =
(
f (0) , f

(
1
32

)
, . . . , f

(
31
32

))
, where f (x) = sin (9 (2πx)) + 3 sin (2 (2πx)) +

2 cos (2πx), what is DFT (x)?

Solution:

yj =

31∑
k=0

xkw
jk x∈Rn= 〈ej , x〉

ALGORITHMS IN ACTION - FFT 4

f(x) = sin(9(2πx)) + 3sin(2(2πx)) + 2cos(2πx)

=
(ei9·2πx − e−9·2πix)

2i
+ 3

(e2·2πix − e−2·2πix)

2i
+

(e2πix + e−2πix)

2

yj =

31∑
k=0

xkw
jk = 〈ej , x〉 =

〈
ej ,

1

2i
e9 −

1

2i
e−9 +

3

2i
e2 −

3

2i
e−2 +

1

2
e1 +

1

2
e−1

〉
=

〈
ej ,

1

2i
e9 −

1

2i
e23 +

3

2i
e2 −

3

2i
e30 +

1

2
e1 +

1

2
e31

〉

y9 =
1

2i
· 32 y23 = − 1

2i · 32 y2 =
3

2i
· 32

y30 = − 3

2i
· 32 y1 = 1

2 · 32 y31 =
1

2
· 32

3.4. Circuit for FFT−1. In order to compute the inverse, we need to run the network back-
wards.

b × − a− ωb

a + a+ ωb
ω−1

Figure 3.1. An FFT−1 ciruit of size 2

We can see that this is the inverse of 2.3

4. Convolution

Given two vectors x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) we can define the convo-
lution as a vector of length 2n x ∗ y = z = (z0, z1, . . . , z2n−1) such that for all 0 ≤ k ≤ 2n− 1 we
have:

zk =
∑
i+j=k

xiyj =
∑
i

xiyk−i max {0, k − n} ≤ i ≤ min {k, n}

Example 3. For n = 4 we have:

z0 = x0y0 z1 = x0y1 + x1y0
z2 = x0y2 + x1y1 + x2y0 z3 = x0y3 + x1y2 + x2y1 + x3y0
z4 = x1y3 + x2y2 + x3y1 z5 = x2y3 + x3y2

z6 = x3y3 z7 = 0

4.1. Convolution and polynomial multiplication. Defining the polynomials

A (x) =

n−1∑
j=0

ajx
j B (x) =

n−1∑
k=0

bkx
k

We will notice that their product A (x)B (x) obeys an interesting rule:

ALGORITHMS IN ACTION - FFT 5

C (x) =A (x)B (x)

=

n−1∑
j=0

ajx
j

(n−1∑
k=0

bkx
k

)

=

2n−2∑
i=0

 ∑
j+k=i

ajbk

xi

=

2k−1∑
i=0

cix
i

Thus, c = (c1, c2, . . . , c2n−1) = a ∗ b

4.2. Cyclic convolution. Similarily to the convolution, we can define z = z ~ y as the cyclic
convolution,in this case z is defined as

zk =
∑

i+j≡k(mod n)

xiyj =
∑
i+j=k

xiyj +
∑

i+j=n+k

xiyj

Example 4. For n = 4 we have:

z0 =x0y0 + x1y3 + x2y2 + x3y1

z1 =x0y1 + x1y0 + x2y3 + x3y2

z2 =x0y2 + x1y1 + x2y0 + x3y3

z3 =x0y3 + x1y2 + x2y1 + x3y0

4.2.1. Relationship between convolution and cyclic convolution. We can reduce the convolution
to a cyclic convolution by padding:

x′ =

(
x0, x1, . . . , xn−1,

n︷ ︸︸ ︷
0, 0, . . . , 0

)
y′ =

(
y0, y1, . . . , yn−1,

n︷ ︸︸ ︷
0, 0, . . . , 0

)

x ∗ y = x′ ~ y′

4.3. The convolution theorem. This theorem enables us to quickly and efficiently compute
the product of two polynomials.

Theorem 5.

x~ y = DFT−1 (DFT (x) ·DFT (y))

Proof. We will define

XY (z) =

n−1∑
i=1

 ∑
j+k≡i

xiyk

 zi

as the polynomial corresponding to x ~ y and show that XY
(
ωln
)

= X
(
ωln
)
Y
(
ωln
)

for every
l = 0, 1, . . . , n − 1 and as a result of the interpolation theorem, we have uniqueness and the

ALGORITHMS IN ACTION - FFT 6

polynomials are equal.

X
(
ωln
)
Y
(
ωln
)

=

n−1∑
j=0

xjω
lj

n−1∑
j=0

ykω
lk

=

2n−2∑
i=1

 ∑
j+k≡i

xjyk

ωli

?
=

n−1∑
i=0

 ∑
j+k≡i

xjyk

ωli

=XY
(
ωl
)

where ? comes from the fact that ωl(n+i) = ωli and the claim follows. �

4.4. The chirp transform. Let z be an arbitrary complex number, the chirp transform of
x ∈ Cn with respect to z is defined as

yk =

n−1∑
j=0

xjz
jk = X

(
zk
)
, k = 0, 1, . . . , n− 1

5. Polynomial arithmetic

For any two polynomials

A (x) =

n−1∑
j=0

ajx
j B (x) =

n−1∑
k=0

bkx
k

of degree ≤ n , the coefficients of A (x) + B (x) can be computed naively using n additions.
However, a naive computation of the coefficients of A (x)B (x) requires Θ

(
n2
)
. Using the FFT

algorithm weare able to calculate the coefficients of A (x)B (x) using only Θ (n log n) operations.

5.1. Karatsuba’s algorithm. For moderately large n, Karatsuba’s algorithm works better in
practice. Setting A0, A1, B0 and B1 to be:

A (x) = A0 (x) + xn/2A1 (x) B (x) = B0 (x) + xn/2B1 (x)

We will define the following:

C0 (x) =A0 (x)B0 (x)

C1 (x) = (A0 (x) +A1 (x)) (B0 (x) +B1 (x))

C2 (x) =A1 (x)B1 (x)

And as a result,

A (x)B (x) = C0 (x) + xn/2 (C1 (x)− C0 (x)− C2 (x)) + xnC2 (x)

Giving us the required result more efficiently.

5.1.1. Complexity analysis. eachCi is of size n
2 , the addtition factor is O (n). As a result, the

total complexity is

T (n) = 3T
(n

2

)
+O (n)⇒ T (n) = O

(
nlog2 3

)
= O

(
n1.59

)

ALGORITHMS IN ACTION - FFT 7

5.2. Integer polynomial multiplication. So far, we assumed that all arithmetical operations
are exact. This is not a realistic assumption, as ωn is usually irrational. The FFT algorithm is
well-behaved numerically, meaning the errors introduced if all operations are done using floating-
point arithmetic are relatively small. In signal processing applications small errors are acceptable.

In our case, we want to add and multiply polynomials with integer coefficients and we want
an exact result. If we use use high enough precision, we can use FFT and FFT−1 and round
the results obtained to the nearest integers.

This isn’t proven here but to multiply two polynomials of degree at most n with integer
coefficients of absolute value at most n, O (log n) bits of precision are enough.

6. Integer multiplication -Schonage-Strassen’s algorithm

There are practical applications, e.g., cryptography, that require multiplying very large inte-
gers. The näıve method for multiplying two n-bit numbers requires Θ

(
n2
)

bit operations. We
can use FFTs to obtain a faster integer multplication algorithm since integer multplication can
be reduced to polynomial multiplication.

6.1. Integer multiplication and FFT. The basic idea is to encode the numbers as polynomials
and evaluate them at 2, then calculate their product.

x = (xn−1, . . . , x1, x0)2 =

n−1∑
i=0

xi2
i = X (2)

y = (yn−1, . . . , y1, y0)2 =

n−1∑
i=0

yi2
i = Y (2)

x · y = z = (z2n−1, . . . , z1, z0)2 =

2n−1∑
i=0

zi2
i = Z (2)

We can easily compute this since it is just polynomial multiplication. However we aren’t done
since the zi aren’t in binary, this is OK since 0 ≤ zi < n this isn’t a serious problem. We will
show some clever stricks to speed the algorithm.

6.2. Splitting into blocks. Assuming n = 2k (k = log n) we will split the integers x, y of length
n into n/k blocks of size k each, thus:

x =(

k=logn︷ ︸︸ ︷
xn/k−1,

k︷ ︸︸ ︷
xn/k−0, . . . ,

k︷︸︸︷
x0)k =

n/k−1∑
i=0

xi2
ki = X

(
2k
)

y =(

k=logn︷ ︸︸ ︷
yn/k−1,

k︷ ︸︸ ︷
yn/k−0, . . . ,

k︷︸︸︷
y0)k =

n/k−1∑
i=0

yi2
ki = Y

(
2k
)

and as before, compute

x · y = z =
(
z2n/k−1, . . . , z1, z0

)
k

=

2n/k−1∑
i=0

zi2
ki = Z

(
2k
)

ALGORITHMS IN ACTION - FFT 8

Figure 6.1. Adding
the zi

Each zi is equal to
∑
j+l=i xjyl and since 0 ≤ xj , yk <

2k = n we have that 0 ≤ zi ≤ (n/ log n)n2 < n3. Thus,
each zi is at most a three digit number base n.

As a result, by concatenating the zi into three long
integers as shown in the picture, we cna arrive at the
result by adding these 2n-bit numbers in O (n) time. In
total, we performer two FFTs and one FFT−1 of size
n/k = n/ log n.
Each input number is an integer between 0 and n − 1.
Each output number is an integer between 0 and n3−1.

6.2.1. Complexity analysis. Defining M (n)as the total nummber of bit operations performed,
we have that

M (n) = O
(

n

log n
log

n

log n
×M (O (log n))

)
= O (nM (O (log n)))

Where n
logn log n

logn is the number of arithmetical operations performed in an FFT of size

n/ log n. We can perform this recursively or we can choose to stop the recursion and perform
the multiplication naively, thus

M (n) ∈

{
O
(
n2
)

O
(
n log2 n

)
O
(
n log n (log log n)

2
)

. . .

}
6.3. The improved algorithm. In 1971 Schönhage-Strassen showed an improved version of
the algorithm, with a running time of O (n log n (log log n)). This improvemnt was obtained by
performing the FFTs in an integer ring where ω = 2 is a primitive root of unity.

Definition 6 (primitive root of unity). An element ω is a primitive n-th root of unity in a ring
R iff:

(1) ωn = 1.
(2) ωk 6= 1 for all k = 0, 1, . . . , n− 1

For example, in C, e
2π
n is a primitive n-th root of unity, as are all e

2πi
n if i is relatively prime

to n. In R the only primitve root is −1, for n = 2.

6.3.1. Number theoretic background.

Theorem 7. Zm is a ring for all integers m and for any prime m, Zm is a field.

Theorem 8. If p is prime, then Zphas a generator, an element g such that gp−1 = 1 but gi 6= 1
for i = 2, 3, . . . , p− 2

Lemma 9. If p is prime, n|p − 1 and k = (p− 1) /n then ω = gk is a primitive n-th root of
unity.

6.3.2. FFT in prime fields.

Example 10. Multiply two integer polynomials of degree < 512.
We need to compute FFT and FFT−1 with n = 1024. We would like to find a prime p such

that 1024|p − 1. We could take p = 12 · 1024 + 1 = 12, 289 but then we will get the coefficents
modulo 12, 289 and the output coefficients are in the range 0, 1, . . . , 10243 − 1.
In total we would like to find a prime p > 10243 such that 1024|p − 1. For example, p =(
10242 + 8

)
· 1024 + 1 and then 5 is a generator and we can take ω = 5(p−1)/1024 = 381, 780, 781

to be our primitive n-th root of unity.

ALGORITHMS IN ACTION - FFT 9

The problem is that this isn’t necessarily faster than working with floating point complex
numbers, even though we don’t need to worry about numerical errors. For this solution to work,
we would need to find appropriate prime numbers and generators.

6.3.3. FFT in rings. Luckily for us, DFT and FFT does not have to be a field.

Lemma 11. Let n and ω be positive powers of 2. ω is a primitive n-th root of unity in Zmwhere
m = ωn/2 + 1.

We will notice that multiplication by ωk is just a shift and taking mod m is a simple operation
since m− 1 = 2a for some a ∈ N.

FFT performs O (n log n) arithmetical operations. However, they are all either additions or
multiplications by ωk. To compute a convolution, we only need n multiplications, other than
multiplications by ωk. Break two n-bit integers into n1 blocks of n2-bits each.

M (n) = O (n1 log n1 ×M (O (n2)))

Since in a computer, multiplications by ωk are essentially additions, then

M (n) = O (n1 log n1O (n2) + n1M (O (n2)))

There are many technical problems to overcome. We have to choose n1 =
√
n rather than n1 =

n/ log n. The end result is an integer multiplication algorithm that performs onlyO
(
n log n (log log n)

2
)

bit operations.

7. String matching

The classical problem presented here is: Given a text of length n and a pattern of length m,
to find all occurrences of the pattern in the text. The näıve algorithm runs in O (mn) time. In
previous courses we learnt of algorithms that run in O (m+ n).

We will present solutions for a few variants of this problem:

(1) Counting the number of matches/mismatches in each alignment of the pattern with the
text.

(2) Find all aligments with at most k mismatches.
(3) Allowing a wildcard that matches any (single) symbol in the pattern and/or text.

Traditional algorithms and techniques aren’t so efficient for these variants.

7.1. Cross-correlation. The only difference between cross-correlation and convolution is a time
reversal on one of the inputs, with a shift of indices.

zk =
∑
i

xiyi−k =
∑
j

xj+kyj =
(
x ∗ yR

)
k+m−1

If x is of length n and y has a length of m where m ≤ n, then k = 1 − m, . . . , n − 1. The
correlation of two vectors of length n can be computed in O (n log n) time.

Exercise 12. The correlation of two vectors of length n and m, where m ≤ n, can be computed
in O (n logm) time.

Example 13. For n = m = 4 we have:

z−3 = x0y3 z−2 = x0y1 + x1y0
z−1 = x0y1 + x1y2 + x2y3 z0 = x0y0 + x1y1 + x2y2 + x3y3
z1 = x1y0 + x3y2 + x3y2 z2 = x2y0 + x3y1

z2 = x3y0

ALGORITHMS IN ACTION - FFT 10

7.1.1. Counting mismatches. Let Σ be the alphabet of the pattern and text. We may assume
that |Σ| ≤ m+ 1, since we only to check if it is equal to one of the characters in x or not in the
pattern.

For every a ∈ Σ we will create two boolean strings;

Pa [j] = 1⇔ P [j] = a Ta [i] = 1⇔ T [i] 6= a

The correlation of Pa and Ta counts mismatches involving a, by summing over all a ∈ Σ we get
the total number of mismatches.

Complexity: O (|Σ|n logm) word operations. This is fast only if |Σ| is small.

7.1.2. Counting mismatches with wildcards. Similarily to before, we will create two boolean
strings

Pa [j] = 1⇔ P [j] = a Ta [i] = 1⇔ T [i] 6= a ∧ T [i] 6= ∗
Complexity: O (|Σ|n logm) word operations. If we only want to find exact matches, we

can replace each character by a dlog2 |Σ|e bit string and the complexity will drop to
O (log |Σ|n logm).

7.2. L2 matching. Standard string matching uses the Hamming distance. Two characters either
match or they do not. The letter a is not closer to b than to z, even though alphabetically they
are right next to each other. Suppose that each “character” is a real number. We want to find
approximate matches. For each k = 0, 1, . . . , n−m we want to compute

dk =

m−1∑
j=0

(pj − tk+j)2

Complexity: We will split the above expression into seperate items

m−1∑
j=0

(pj − tk+j)2 =

m−1∑
j=0

p2j − 2

m−1∑
j=0

pjtk+j +

m−1∑
j=0

t2k+j

The first term can be calculated in O (m) the second is just the correlation which can
be computed in O (n logm) and the third in O (n). Thus the total complexity for L2

matching is O (n logm).

7.3. Exact matches with wildcards (Clifford-Clifford). Replace each character by a posi-
tive integer. Replace the wildcard by 0. For each k ∈ [n−m] compute

dk =

m−1∑
j=0

pjtk+j (pj − tk+j)2

There is an exact match at position k iff dk = 0.

Complexity: As before, we will split the above expression into seperate items

dk =

m−1∑
j=0

pjtk+j (pj − tk+j)2 =

m−1∑
j=0

p3j tk+j − 2

m−1∑
j=0

p2j t
2
k+j +

m−1∑
j=0

pjt
3
k+j

We can compute the three correlations in O (m log n), giving us a running time imde-
pendent of |Σ|.

	1. Discrete Fourier Transform
	1.1. DFT as polynomial evaluation

	2. Fast Fourier Transform
	2.1. Decomposing the DFT
	2.2. Complexity analysis of the FFT
	2.3. Circuit for FFT

	3. The inverse DFT
	3.1. Proof of the inverse
	3.2. DFT-1 as polynomial interpolation
	3.3. The fourier basis
	3.4. Circuit for FFT-1

	4. Convolution
	4.1. Convolution and polynomial multiplication
	4.2. Cyclic convolution
	4.3. The convolution theorem
	4.4. The chirp transform

	5. Polynomial arithmetic
	5.1. Karatsuba's algorithm
	5.2. Integer polynomial multiplication

	6. Integer multiplication -Schonage-Strassen's algorithm
	6.1. Integer multiplication and FFT
	6.2. Splitting into blocks
	6.3. The improved algorithm

	7. String matching
	7.1. Cross-correlation
	7.2. L2 matching
	7.3. Exact matches with wildcards (Clifford-Clifford)

