THE MULTIPLICATIVE WEIGHT UPDATES METHOD

URI ZWICK AND HAIM KAPLAN

1. The basic Binary Setting

On each of T days, n experts predict "up" or "down", and we have have to make a decision according to their predictions.
1.1. The Weighted Majority Algorithm. We choose a parameter $0 \leq \eta \leq \frac{1}{2}$ and assign each expert i an initial weight of $w_{i}^{t}=1$. At the end of the day we decide "up" if and only if $\sum_{\mathrm{i} \text { predicted up }} w_{i}^{t} \geq \sum_{\mathrm{i}}$ predicted down w_{i}^{t}. Then we update the weights:

$$
w_{i}^{t+1}= \begin{cases}w_{i}^{t} & \text { i was correct on day } \mathrm{t} \\ (1-\eta) w_{i}^{t} & \text { else }\end{cases}
$$

We also define the cost of each expert at day T to be the number of mistakes he did until day T . The cost of the algorithm is defined simmilarily.

Theorem 1. For every expert it holds that:

$$
\operatorname{cost}^{T}\left(W M_{\eta}\right) \leq 2(1+\eta) \operatorname{cost}^{t}(\exp)+\frac{2 \ln (n)}{\eta}
$$

Proof. Let $W^{t}=\sum_{i=1}^{n} w_{i}^{t}$. If $M W \eta$ makes a mistake in day t, then the weighted majority of the experts predicted wrong. Therefore,

$$
W^{t+1} \leq\left(\frac{1}{2}+\frac{1}{2}(1-\eta)\right) W^{t}=\left(1-\frac{\eta}{2}\right) W^{t}
$$

Since $W^{1}=n$ we have (by induction):

$$
W^{t+1} \leq n\left(1-\frac{\eta}{2}\right)^{\cos t^{t}\left(W M_{\eta}\right)}
$$

The same analysis yields that: $W^{T+1} \geq w_{\text {exp }}^{t+1}=(1-\eta)^{\operatorname{cost}^{t}(e x p)}$.

$$
\begin{gathered}
(1-\eta)^{\operatorname{cost}^{t}(e x p)} \leq W^{t+1} \leq\left(1-\frac{\eta}{2}\right)^{\operatorname{cost}^{t}\left(W M_{\eta}\right)} \\
\operatorname{cost}^{t}(e x p) \ln (1-\eta) \leq \operatorname{cost}^{t}\left(W M_{\eta}\right) \ln \left(1-\frac{\eta}{2}\right)+\ln (n) \\
\operatorname{cost}^{t}\left(W M_{\eta}\right) \leq \frac{\ln (1-\eta)}{\ln \left(1-\frac{\eta}{2}\right)} \operatorname{cost}^{t}(e x p)+\frac{\ln (n)}{-\ln \left(1-\frac{\eta}{2}\right)} \\
\operatorname{cost}^{t}\left(W M_{\eta}\right) \leq \frac{\eta+\eta^{2}}{\frac{\eta}{2}}+\frac{\ln (n)}{\frac{\eta}{2}}=2(1+\eta) \operatorname{cost}^{t}(\exp)+\frac{2 \ln (n)}{\eta}
\end{gathered}
$$

Notes written by Bar Aschner, all rights reserved for Arazim © (C) except for the right to remain silent, that is saved for Marco.

On the last inequallity we used the fact that $x \leq-\ln (1-x) \leq x+x^{2}$ for $x \in\left(0, \frac{1}{2}\right)$.

2. The General Setting

On each day we choose a distribution over the experts. Then the cost of each expert (which is a real number in $[-1,1]$) is revealed and we pay the expected cost according to the distribution chosen.

We start by picking a parameter $\eta \in\left[0, \frac{1}{2}\right]$. The weight of each expert i at day t is w_{i}^{t}. We also get the distribution over the experts:

$$
p^{t}=\frac{\left(w_{1}^{t} \ldots w_{n}^{t}\right)}{W^{t}}
$$

Where $W^{t}=\sum_{i} w_{i}^{t} . m_{i}^{t}$ is the cost of expert i at day t. At the end of the day we update the costs by getting $w_{i}^{t+1}=w_{i}^{t}\left(1-\eta m_{i}^{t}\right)$. The cost for the algorithm at day t is $p^{t} \cdot m^{t}$. We define the cost of each expert and the cost of the algorithm to be the sum of the costs up to day t. That is, $\operatorname{cost}^{t}\left(M W_{\eta}\right)=\sum_{t=1}^{T} p^{t} \cdot m^{t}$ and $\operatorname{cost}(\exp)=\sum_{t=1}^{T} m_{\text {exp }}^{T}$.
Theorem 2. For every expert it holds that:

$$
\operatorname{cost}^{t}\left(M W_{\eta}\right) \leq \operatorname{cost}^{t}(e x p)+\eta \sum_{t=1}^{T}\left(m_{i}^{t}\right)^{2}+\frac{\ln (n)}{\eta}
$$

Proof.
$\ln \frac{W^{t+1}}{W^{1}}=\sum_{t=1}^{T} \ln \frac{W^{t+1}}{W^{t}}=\sum_{t=1}^{T} \ln \left(\sum_{i=1}^{n} p_{i}^{t}\left(1-\eta m_{i}^{t}\right)\right)=\sum_{t=1}^{T} \ln \left(1-\eta p^{t} \cdot m^{t}\right) \leq-\eta \sum_{t=1}^{T} p^{t} \cdot m^{t}$

On the last inequallity we used the fact that $\ln (1-x) \leq-x$ for $x \leq \frac{1}{2}$.
On the other hand:

$$
\begin{gathered}
\ln \frac{W^{t+1}}{W^{1}} \geq \frac{w_{e x p}^{t+1}}{n}=\sum_{t=1}^{T} \ln \left(1-\eta m_{i}^{t}\right)-\ln (n) \\
\geq \ln (n)-\eta \sum_{t=1}^{T} m_{i}^{t}-\eta^{2} \sum_{t=1}^{T}\left(m_{i}^{t}\right)^{2}
\end{gathered}
$$

We get the result by combining these inequalities.
Corollary 3. If p is a distribution and $\left|m^{t}\right|$ is the vector obtained by taking the absolute value in each coordinate. Then:

$$
\sum_{t=1}^{T} p^{t} m^{t} \leq \sum_{t=1}^{T} p \cdot m^{t}+\eta \sum_{t=1}^{T} p \cdot\left|m^{t}\right|+\frac{\ln (n)}{\eta}
$$

If we have a reward r^{t} instead of cost, and updated by using the rule $w_{i}^{t+1}=$ $w_{i}^{t}\left(1+\eta r_{i}^{t}\right)$ then:

$$
\sum_{t=1}^{T} p^{t} \cdot r^{t} \geq \sum_{t=1}^{T} r_{i}^{t}-\eta \sum_{t=1}^{T}\left(r_{i}^{t}\right)^{2}-\frac{\ln }{\eta}
$$

3. Learning A Linear Classfier

We are given a set of m points $a_{1} \ldots a_{m} \in \mathbb{R}^{n}$. Suppose that there is a nonnegative vector $x \in \mathbb{R}^{n}$ such that $a_{j} \cdot x \geq \epsilon$ for all j. The algorithm finds a non-negative vector $u \in \mathbb{R}^{n}$ such that $1 \cdot u=1$ and $a_{j} \cdot u \geq 0$ for all j.

The Algorithm: We define $\rho=\max _{j}\left|a_{j}\right|_{\infty}$. Select $\eta=\frac{\epsilon}{2 \rho}$. We will have an "expert" for each coordinate. Run the $M W_{\eta}$ algorithm. In each iteration, if p^{t} is a good classifier, stop. Otherewise, let j be the first index such that $p^{t} \cdot a_{j}<0$. Let $m^{t}=-\frac{a_{j}}{\rho}$.

Theorem 4. This algorithm stops after at most $\frac{4 \rho^{2}}{\epsilon^{2}} \ln (n)$ iterations.
Proof.

$$
\sum_{t=1}^{T} p^{t} m^{t} \leq \sum_{t=1}^{T} x \cdot m^{t}+\eta \sum_{t=1}^{T} x \cdot\left|m^{t}\right|+\frac{\ln (n)}{\eta}
$$

For every day $t \leq T$ we have a point $a(t)$ such that $a_{j}(t) \cdot p^{t}<0$ and $m^{t}=-\frac{a(t)}{\rho}$.

$$
\begin{gathered}
\sum_{t=1}^{T} p^{t} \cdot \frac{-a_{j}(t)}{\rho} \leq \sum_{t=1}^{T} x \cdot \frac{-a(t)}{\rho}+\eta \sum_{t=1}^{T} x \cdot \frac{|a(t)|}{\rho}+\frac{\ln (n)}{\eta} \\
0 \leq-\frac{\epsilon T}{\rho}+\eta T+\frac{\ln (n)}{\eta} \\
\eta T \leq \frac{\ln (n)}{\eta} \\
T \leq\left(\frac{2 \rho}{\epsilon}\right)^{2} \ln (n)
\end{gathered}
$$

As required.

4. Zero Sum Games

We talk about 2-player (ROW and COLUMN) games with randomized (mixed) startegies. Let A be a matrix. ROW has a disribution p over the rows of A , COLUMN has a distribution q over the columns of A. The expected payoff (row pays column) is $A[p, q]=p^{t} A q=\sum_{i, j} p_{i} q_{j} A[i, j]$.
4.1. Von Neumann's Theorem. It holds that:

$$
\min _{p} \max _{q} A[p, q]=\max _{q} \min _{p} A[p, q]=\min _{p} \max _{j} A[p, j]=\max _{q} \min _{i} A[i, q]
$$

4.2. Solving Zero-Sum Games Approximately. We want to approximate the game's value and the optimal strategies. We assume that $A_{i j} \in[0,1]$ for all i, j. Let $v^{*}=\operatorname{val}(A)$ and $\epsilon>0 . p, q$ are ϵ-optimal strategies if $\max _{j} A[p, j] \leq v^{*}+\epsilon$ and $\min _{i} A[i . q] \geq v^{*}-\epsilon$. We have an expert for each of the n rows of A. In each iteration t, the algorithm produces a distribution p^{t}. The cost vector m^{t} is the column j^{t} of A which maximizes $A\left[p^{t}, j\right]$. Note that: $p \cdot m^{t}=A\left[p^{t}, j^{t}\right] \geq v^{*}$.
Theorem 5. If $M W_{\eta}$ is run with $\eta=\frac{\epsilon}{2}$ for $\frac{4 \ln (n)}{\epsilon^{2}}$ iterations, then the best strategy obtained is ϵ optimal for $R O W$. If A has m columns then the running time is $O\left(\frac{m n \ln (n)}{\epsilon^{2}}\right)$.

Proof. First, we bound the running time of the algorithm.

$$
\begin{gathered}
\sum_{t=1}^{T} A\left(p^{t}, j^{t}\right) \leq(1+\eta) \sum_{t=1}^{T} A\left(p^{*}, j^{t}\right)+\frac{\ln (n)}{\eta} \\
v^{*} \leq \frac{1}{T} \sum_{t=1}^{T} A\left(p^{t}, j^{t}\right) \leq v^{*}+\eta+\frac{\ln (n)}{\eta T}
\end{gathered}
$$

and if $T=\frac{4 \ln (n)}{\epsilon^{2}}$ then:

$$
v^{*} \leq \frac{1}{T} \sum_{t=1}^{T} A\left(p^{t}, j^{t}\right) \leq v^{*}+\epsilon
$$

Now we show how to find an ϵ-optimal strategy for ROW. By the inequality above, there exists t such that $A\left(p^{t}, j^{t}\right)=\min _{j} A\left(p^{t}, j\right) \leq v^{*}+\epsilon$. Thus, if t minimizes $A\left(p^{t}, j^{t}\right)$ then p^{t} is an ϵ-optimal strategy for ROW. An ϵ-optimal strategy for COLUMN can also be found. Let q be such that $q_{j}=\frac{\left|\left\{t ; j^{t}=j\right\}\right|}{T}$. For every i,

$$
\frac{1}{T} \sum_{t=1}^{T} A\left(i, j^{t}\right)=A(i, q)
$$

Therefore we get that:

$$
v^{*} \leq \frac{1}{T} \sum_{t=1}^{T} A\left(p^{t}, j^{t}\right) \leq(1+\eta) \frac{1}{T} \sum_{t=1}^{T} A\left(i, j^{t}\right)+\frac{\ln n}{\eta T} \leq A(i, q)+\epsilon
$$

Thus q is an ϵ-optimal strategy for column.

5. Maximum Multicommodity Flow

$G=(V, E)$ is a directed graph with n vertices and m edges. We are also given a capacity function $c: E \rightarrow \mathbb{R}^{+}$and k pairs of source and sink. We want to maximize the total flow. Let \mathcal{P} be the set of all simple paths from $\left(s_{i}, t_{i}\right)$ for some $i \in[k]$. We show a $(1-\epsilon)$-approximation algorithm. We will use the rewards version of the Multiplicative Updates Algorithm. We will have an "expert" for each edge. Let $\eta=\frac{\epsilon}{2}$. We give each edge a weight w_{e}^{t} and initialize it to 1 . In each iteration t, we find a shortest path p^{t} with respect to the edge weights $\frac{w_{e}^{t}}{c_{e}}$. We route c^{t} units of flow on the path p^{t} where $c^{t}=\min _{e \in p^{t}} c_{e}$.

Define $r_{e}^{t}=\frac{c^{t}}{c_{e}} \in[0,1]$ if $e \in p^{t}$ and otherwise, $r_{e}^{t}=0$. We stop when there is an edge $e \in E$ such that $\frac{f_{e}}{c_{e}} \geq \frac{\ln m}{\eta^{2}}$.

Analysis: Let $f^{\text {opt }}$ be the optimal flow, and $F^{o p t}=\sum_{p \in \mathcal{P}} f_{p}^{o p t}$, Where f_{p} is the flow along the path p. Also let $F=\sum_{t=1}^{T} c^{t}$. By corrolary 1.2.2:

$$
\sum_{t=1}^{T} p^{t} \cdot r^{t} \geq(1-\eta) \sum_{t=1}^{T} r_{e}^{t}-\frac{\ln m}{\eta}
$$

It also holds that:

$$
\sum_{t=1}^{T} p^{t} \cdot r^{t}=\sum_{t=1}^{T} \frac{\sum_{e \in p^{t}} w_{e}^{t} \frac{c^{t}}{c_{e}}}{\sum_{e \in E} w_{e}^{t}}=\sum_{t=1}^{T} c^{t} \frac{\sum_{e \in p^{t}} \frac{w_{e}^{t}}{c_{e}}}{\sum_{e \in E} w_{e}^{t}}
$$

$$
\leq \frac{\sum_{t=1}^{T} c^{t}}{F^{o p t}}=\frac{F}{F^{o p t}}
$$

Let $p \in \mathcal{P}$ be a shortest path with respect to the edge weights $\frac{w_{e}}{c_{e}}$. We get that:

$$
\frac{\sum_{e \in E} w_{e}}{\sum_{e \in p} \frac{w_{e}}{c_{e}}} \geq \frac{\sum_{e \in E} w_{e} \sum_{e \in p^{\prime}} \frac{f_{p^{\prime}}^{o p t}}{c_{e}}}{\sum_{e \in p} \frac{w_{e}}{c_{e}}}=\frac{\sum_{p^{\prime} \in \mathcal{P}} f_{p^{\prime}}^{o p t} \sum_{e \in p^{\prime}} \frac{w_{e}}{c_{e}}}{\sum_{e \in p} \frac{w_{e}}{c_{e}}} \geq \sum_{p^{\prime} \in \mathcal{P}} f_{p^{\prime}}^{o p t}=F^{o p t}
$$

Let $C=\max _{e \in E} \frac{f_{e}}{c_{e}}$. It follows that:

$$
\frac{F}{F^{o p t}} \geq \sum_{t} p^{t} r^{t} \geq(1-\eta) \max _{e \in E} \frac{f_{e}}{c_{e}}-\frac{\ln m}{\eta} \geq(1-2 \eta) C
$$

When the algorithm terminates $C \geq \frac{\ln m}{\eta^{2}}$, we scale down the flow by C and achieve a legal flow (a flow that satisfies the capacity constraints).

$$
\frac{F}{C} \geq(1-2 \eta) F^{o p t}=(1-\epsilon) F^{o p t}
$$

5.1. Bounding the number of iterations. We stop when $C \geq \frac{\ln m}{\eta^{2}}$. Each iteration increases C by at least 1 . Therefore, the number of iterations is bounded by $m\left\lceil\frac{\ln m}{\eta^{2}}\right\rceil$. Let $T_{s p}(m)$ be the time of finding a shortest path on a graph with $O(m)$ edges. Then the total running time is bounded by $O\left(k \frac{m \ln m}{\epsilon^{2}} T_{s p}(m)\right)$.

