ALGORITHMS IN ACTION - SOLVING SAT (RANDOMIZED)

TOMER BINCOVICH

1. INTRODUCTION

We present two randomized algorithms for the 3-SAT problem (the PPZ algorithm is more general and solves the k-SAT problem), then state two conjectures about lower bounds.

2. SCHÖNING'S ALGORITHM

2.1. The algorithm. This algorithm is based on a random walk. It consists of running a "try" procedure (which tries to find a satisfying assignment) s times, and if no run succeeded in finding a satisfying assignment, unsat is returned. The algorithm:

```
Walk3SAT(F: clause set):
repeat s times:
    A\leftarrow random assignment
    repeat 3n times:
        if A is satisfying return sat
        choose C\inF which is not satisfied
        choose uniformly at random a literal l in C
        flip the value of the variable of l in }
return unsat
```

Or, more concisely:

```
Walk3SAT(F: clause set)
repeat s times: "try"
return unsat
```

We remark that if the boolean formula (with the clause set F) is unsatisfiable, the algorithm always returns unsat, while if the formula is satisfiable, the algorithm may return unsat with some probability. Next we bound this probability.
2.2. The success probability of a try. Assume the formula is satisfiable. Fix some satisfying assignment A^{*}, and let A_{t} be the assignment after t steps of the try procedure. Note that A_{0} is the initial random assignment. Let $X_{t}=d\left(A_{t}, A^{*}\right)$, meaning the number of variables that are given different values according to A_{t} and A^{*}. It can be seen that $X_{0} \sim \operatorname{Bin}\left(n, \frac{1}{2}\right)$. A try is successful if $X_{t}=0$ for some $t \leq 3 n$: it means that $A_{t}=A^{*}$, which says we found a satisfying assignment (pay attention that the probability for a try to succeed can be higher; here we analyze the probability to find a specific satisfying assignment - A^{*}, but there can be more the just one).

[^0]Let us focus on the variable $X_{t} . X_{t}$ changes by ∓ 1 each time we change the assignment, and decreases with probability $\geq \frac{1}{3}$ (in every unsatisfied clause, at least 1 out of the 3 variables gets a different value than in A^{*} - otherwise the clause would be satisfied). However, the exact probability depends on the history.

As A^{*} is a satisfying assignment, there exists for every clause a literal satisfied by A^{*}. Mark such a literal for each clause. Define the variable $Y_{t}: Y_{0}=X_{0}, Y_{t}$ changes by -1 if the algorithm picks the marked literal (of the unsatisfied clause $C)$, otherwise it changes by +1 .
Lemma 1. $Y_{t} \geq X_{t}$.
Proof. By induction. First we have $Y_{0}=X_{0}$. It remains to show that whenever X_{t} goes up, so does Y_{t} (so if we have inductively that $Y_{t} \geq X_{t}$, if X_{t} changes by +1 so does Y_{t}, and otherwise X_{t} changes by -1 , and Y_{t} cannot go down by more than 1. In each case the inequality holds). But X_{t} goes up only when we flip a variable whose values in A_{t} and A^{*} are the same. Assume to the contrary that Y_{t} goes down, so we picked the marked literal, and by definition it is satisfied by A^{*}. But as seen, the chosen variable got the same value as in A^{*}, which implies that the chosen clause was satisfied - a contradiction.

Thus, $p=\operatorname{Pr}\left[\exists t \leq 3 n, Y_{t}=0\right] \leq \operatorname{Pr}\left[\exists t \leq 3 n, X_{t}=0\right]$, and we want a lower bound on $p . Y_{t}$ describes a random walk on the line (of non-negative integers), with probability $\frac{1}{3}$ to go left and $\frac{2}{3}$ to go right.

We wish to bound $p_{j}=\operatorname{Pr}\left[\exists t \leq 3 n, Y_{t}=0 \mid Y_{0}=j\right]$. We can compute $q_{j}=\operatorname{Pr}\left[\exists t, Y_{t}=0 \mid Y_{0}=j\right]$, and $p_{j} \leq q_{j}$, but we actually need a lower bound:

$$
\begin{gathered}
q_{0}=1 \\
q_{1}=\frac{1}{3}+\frac{2}{3}\left(q_{1}\right)^{2} \Rightarrow q_{1}=\frac{1}{2} \\
6 q_{j}=\frac{1}{3} q_{j-1}+\frac{2}{3} q_{j+1} \Rightarrow q_{j+1}=\frac{3}{2} q_{j}-\frac{1}{2} q_{j-1} \Rightarrow q_{j}=\left(\frac{1}{2}\right)^{j}
\end{gathered}
$$

so $p_{j} \leq q_{j}=\left(\frac{1}{2}\right)^{j}$. We also have, for every k such that $j+2 k \leq 3 n$:

$$
p_{j} \geq\binom{ j+2 k}{k}\left(\frac{2}{3}\right)^{k}\left(\frac{1}{3}\right)^{j+k}
$$

since this is the probability that we have $j+k$ moves left and k move right, in a sequence of $j+2 k$ moves. Now:

$$
p_{j} \geq\binom{ 3 j}{j}\left(\frac{2}{3}\right)^{j}\left(\frac{1}{3}\right)^{2 j}
$$

Stirling:

$$
\begin{gathered}
\sqrt{2 \pi m}\left(\frac{m}{e}\right)^{m} \leq m!\leq 2 \sqrt{2 \pi m}\left(\frac{m}{e}\right)^{m} \\
\binom{3 j}{j}=\frac{(3 j)!}{j!(2 j)!} \geq \frac{\sqrt{2 \pi 3 j}\left(\frac{3 j}{m}\right)^{3 j}}{2 \sqrt{2 \pi j}\left(\frac{j}{e}\right)^{j} 2 \sqrt{2 \pi 2 j}\left(\frac{2 j}{e}\right)^{2 j}}=\frac{\sqrt{3}}{8 \sqrt{\pi j}}\left(\frac{27}{4}\right)^{j} \\
p_{j} \geq\binom{ 3 j}{j}\left(\frac{2}{3}\right)^{j}\left(\frac{1}{3}\right)^{2 j} \geq \frac{c}{\sqrt{j}}\left(\frac{27}{4}\right)^{j}\left(\frac{2}{3}\right)^{j}\left(\frac{1}{3}\right)^{2 j}=\frac{c}{\sqrt{j}}\left(\frac{1}{2}\right)^{j}
\end{gathered}
$$

and we get

$$
\frac{c}{\sqrt{n}}\left(\frac{1}{2}\right)^{j} \leq \frac{c}{\sqrt{j}}\left(\frac{1}{2}\right)^{j} \leq p_{j} \leq q_{j}=\left(\frac{1}{2}\right)^{j}
$$

(the leftmost inequality holds even for $j=0$).
Now, we return to p :

$$
\begin{gathered}
p=\operatorname{Pr}\left[\exists t \leq 3 n, Y_{t}=0\right]=\sum_{j=0}^{n} \operatorname{Pr}\left[Y_{0}=j\right] p_{j} \geq \sum_{j=0}^{n}\binom{n}{j}\left(\frac{1}{2}\right)^{n} \frac{c}{\sqrt{n}}\left(\frac{1}{2}\right)^{j}= \\
=\left(\frac{1}{2}\right)^{n} \frac{c}{\sqrt{n}}\left(\sum_{j=0}^{n}\binom{n}{j}\left(\frac{1}{2}\right)^{j}\right)=\left(\frac{1}{2}\right)^{n} \frac{c}{\sqrt{n}}\left(\sum_{j=0}^{n}\binom{n}{j}\left(\frac{1}{2}\right)^{j} 1^{n-j}\right) \\
=\left(\frac{1}{2}\right)^{n} \frac{c}{\sqrt{n}}\left(\frac{1}{2}+1\right)^{n}=\left(\frac{1}{2}\right)^{n} \frac{c}{\sqrt{n}}\left(\frac{3}{2}\right)^{n}=\frac{c}{\sqrt{n}}\left(\frac{3}{4}\right)^{n}
\end{gathered}
$$

2.3. Analysis of the full algorithm. We set $s=\frac{\alpha}{p}$ (α is a constant; recall the Walk3SAT algorithm in section 2.1), and conclude that if there is a satisfying assignment we fail to find it with probability $\leq(1-p)^{\frac{\alpha}{p}} \overbrace{\leq}^{1-x \leq e^{-x}} e^{-\alpha}$. The running time is $\mathrm{O}^{*}\left(\frac{1}{p}\right)=\mathrm{O}^{*}\left(\left(\frac{4}{3}\right)^{n}\right)$ (i.e. we ignore polynomial factors).

3. PATURI-PUDLAK-ZANE ALGORITHM

3.1. The algorithm. This algorithm resembles the SAT solver with unit propagation, but traverses the variables in a random order, and pick a random value when cast with a decision.

```
PPZ(F: clause set):
repeat s times:
    Pick random }\pi\in\mp@subsup{S}{n}{
    x\leftarrow\emptyset (the assignment)
    for i=1 to n:
        if ( }\mp@subsup{x}{\pi(i)}{})\inF\mathrm{ then
            {x m(i)}=1;F\leftarrowF[\mp@subsup{x}{\pi(i)}{}=1]
        else if ( }\mp@subsup{\overline{x}}{\pi(i)}{})\inF\mathrm{ then
            {x m(i)}=0;F\leftarrowF[\mp@subsup{x}{\pi(i)}{}=0]
        else {pick \alpha\in{0,1} at random;
            x}\mp@subsup{x}{\pi(i)}{}=\alpha;F\leftarrowF[\mp@subsup{x}{\pi(i)}{}=\alpha]
    if x is satisfying return sat
return unsat
```

Again, we "try" to find a satisfying assignment s times (restarting after each time), and we will prove a lower bound on the success probability of a try.
3.2. Analysis of the full algorithm. As before, let p be the probability that a try finds a specific satisfying assignment (assuming the formula is satisfiable). We again set $s=\frac{\alpha}{p}$, and remark that we fail to find the assignment when there is one with probability $(1-p)^{t} \leq e^{-\alpha}$.
Theorem 2. For k-SAT, $p \geq\left(\frac{1}{2^{1-\frac{1}{k}}}\right)^{n}$.

So we repeat the try procedure $\approx\left(2^{\left(1-\frac{1}{k}\right)}\right)^{n}$ times. The values for small k are:

k	3	4	5	6	7	8
$2^{1-\frac{1}{k}}$	1.58	1.68	1.74	1.78	1.81	1.83

3.3. Proof of the theorem - the success probability of a try. Fix a satisfying assignment x. We call a variable critical if when we flip its value, the assignment we get (from x) is no longer satisfying. Let $j(x)$ be the number of critical vars, and $s(x)=n-j(x)$.
Lemma 3. $\sum_{x \in \text { sat }} \frac{1}{2^{s(x)}} \geq 1$.
Proof. Induction on n (the number of vars).
Base: $n=1$.
Case 1: Only one satisfying assignment x. Then flipping the value of the only variable leads to a non-satisfying assignment, so $j(x)=1, s(x)=0$.

Case 2: Two satisfying assignments x^{1}, x^{2}, so the value of the variable does not matter, and

$$
\begin{aligned}
& j\left(x^{1}\right)=j\left(x^{2}\right)=0 \\
& s\left(x^{1}\right)=s\left(x^{2}\right)=1
\end{aligned}
$$

Induction step: split the satisfying assignments into two sets

$$
\begin{aligned}
& \text { sat }_{0}=\left\{x \in S \mid x_{n}=0\right\} \\
& \text { sat }_{1}=\left\{x \in S \mid x_{n}=1\right\}
\end{aligned}
$$

Case 1: sat ${ }_{0}=\emptyset$ (the case $s a t_{1}=\emptyset$ is analogous). There is a 1-1 correspondence between assignments x and assignments x^{\prime} of $F\left[x_{n}=1\right]\left(x_{n}\right.$ must be 0 in $\left.x\right), x_{n}$ is critical in x so $s_{F\left[x_{n}=1\right]}\left(x^{\prime \prime}\right)=s(x)$. Apply the induction hypothesis to $F\left[x_{n}=1\right]$.

Case 2: sat $\neq \emptyset$ and $s a t_{1} \neq \emptyset$. There is a $1-1$ correspondence between assignments $x \in s a t_{0}$ and assignments x^{\prime} of $F\left[x_{n}=0\right]$, so $s_{F\left[x_{n}=0\right]}\left(x^{\prime}\right) \geq s(x)-1$ (as x_{n} may not be critical in x). Similarly, there is a 1-1 correspondence between assignments $x \in \operatorname{sat}_{1}$ and assignments x^{\prime} of $F\left[x_{n}=1\right]$, so $s_{F\left[x_{n}=1\right]}\left(x^{\prime}\right) \geq s(x)-1$. Thus

$$
\begin{aligned}
& \sum_{x \in s a t} \frac{1}{2^{s(x)}}=\sum_{x \in s a t_{0}} \frac{1}{2^{s(x)}}+\sum_{x \in s a t_{1}} \frac{1}{2^{s(x)}} \\
& \geq \sum_{x^{\prime} \in \operatorname{sat}\left(F\left[x_{n}=0\right]\right)} \frac{1}{2^{s_{F\left[x_{n}=0\right]}\left(x^{\prime}\right)+1}} \\
& +\sum_{x^{\prime} \in \operatorname{sat}\left(F\left[x_{n}=1\right]\right)} \frac{1}{2^{s_{F\left[x_{n}=1\right]}\left(x^{\prime}\right)+1}} \geq \frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

In addition, let $r(x, \pi) \leq j(x)$ be the number of critical vars that are last in some critical clause (a clause that becomes unsatisfied when we flip the value of a critical var) by π (i.e. vars $x_{\pi(i)}$ such that when the algorithm gets to $x_{\pi(i)}$ its value is forced to be the correct value by unit propagation). Observe that the only way that we find x when using π is to guess correctly the values for the vars which
are not counted in $r(x, \pi)$, and the algorithms is then forced to set the other values correctly. Thus

$$
\begin{gathered}
P[\operatorname{Alg} \text { finds } x \text { when using } \pi]=\frac{1}{2^{n-r(x, \pi)}} \\
P[\operatorname{Alg} \text { finds } x]=\sum_{\pi} P[\operatorname{Alg} \text { finds } x \text { when using } \pi] \frac{1}{n!} \\
=\sum_{\pi} \frac{1}{2^{n-r(x, \pi)}} \frac{1}{n!}=\frac{1}{2^{n}} \sum_{\pi} \frac{1}{n!} 2^{r(x, \pi)}=\frac{1}{2^{n}} E\left(2^{r(x, \pi)}\right) \\
\geq \frac{1}{2^{n}} 2^{E(r(x, \pi))}
\end{gathered}
$$

The last inequality is due to Jensen's inequality (as the function 2^{x} is convex).

$$
\begin{gathered}
E(r(x, \pi))=\sum_{x_{i} \text { critical }} P\left(x_{i} \text { last in critical clause in } \pi\right) \\
\geq \sum_{x_{i} \text { critical }} \frac{1}{k}=\frac{j(x)}{k}
\end{gathered}
$$

And

$$
\begin{gathered}
P[\text { Alg finds } x] \geq \frac{1}{2^{n}} 2^{E(r(x, \pi))} \geq \frac{1}{2^{n}} 2^{\frac{j(x)}{k}} \\
\geq \frac{1}{2^{n-\frac{n}{k}}} 2^{\frac{j(x)}{k}-\frac{n}{k}} \\
\geq\left(\frac{1}{2^{1-\frac{1}{k}}}\right)^{n} \frac{1}{2^{\frac{s(x)}{k}}} \geq\left(\frac{1}{2^{1-\frac{1}{k}}}\right)^{n} \frac{1}{2^{s(x)}}
\end{gathered}
$$

Finally

$$
\begin{gathered}
p=\sum_{x \in \text { sat }} P[\text { Alg finds } x] \geq\left(\frac{1}{2^{1-\frac{1}{k}}}\right)^{n} \sum_{x \in \text { sat }} \frac{1}{2^{s(x)}} \\
\geq\left(\frac{1}{2^{1-\frac{1}{k}}}\right)^{n}
\end{gathered}
$$

3.4. Summary. For 3 -SAT we get running time of 1.58^{n}. It was improved (PPSZ) to 1.36^{n}, and the current record is 1.308^{n}. The first algorithm we saw (section 2.1) whose running time is about 1.33^{n} beats PPZ.

4. ETH AND SETH

Two famous conjectures that capture the following beliefs (Exponential Time Hypothesis and its Strong variant):
(ETH) There is no algorithm for 3-SAT that runs in $2^{o(n)}$ time
(SETH) There is no algorithm for SAT that runs in $(2-\varepsilon)^{n}$ time
It can be shown that SETH implies ETH, and those conjectures have been used to derive many (conditional) lower bounds.

[^0]: Based on Lectures by Haim Kaplan and Uri Zwick.

